Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 63(23): 6208-6234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35139704

RESUMEN

Black soybean (BS) is a nutritious legume that is high in proteins, essential amino acids, dietary fiber, vitamins, minerals, anthocyanins, phenolic acids, isoflavones, and flavones. Traditional approaches for extracting BS bioactive compounds are commonly employed because they are simple and inexpensive, but they use toxic solvents and have lower yields. As a result, new extraction techniques have been developed, such as microwave, ultrasound, and enzyme-assisted extraction. Modern approaches are less harmful to the environment, are faster, and produce higher yields. The major anthocyanin in the BS seed coat was discovered as cyanidin-3-O-glucoside, accounting for nearly 75% of the total anthocyanins. BS and its seed coat also contains phenolic acids (p-hydroxybenzoic, gallic, vanillin, syringic acid), isoflavones (daidzein, glycitein and genistein), flavones, flavonols, flavanones, and flavanols. Bioactive compounds present in BS exhibit antioxidant, anti-cancerous, anti-diabetic, anti-obesity, anti-inflammatory, cardio and neuroprotective activities. The characterization and biological activity investigation of these bioactive compounds has provided researchers and food manufacturers with valuable information for developing functional food products and nutraceutical ingredients. In this review, the nutritional makeup of BS is reviewed, and the paper seeks to provide an insight of bioactive compound extraction methods as well as bioactive compounds identified by various researchers. The biological activities of BS extracts and their potential applications in food products (noodles), biodegradable films (pH sensitive film), and therapeutic applications (wound healing and anti-inflammation) are also discussed in the study. Therefore, BS have enormous potential for use in developing functional foods and nutraceutical components. This is the first review of its sort to describe and explain various extraction methodologies and characterization of bioactives, as well as their biological activity recorded in diverse works of literature, making it possible for food manufacturers and scientists to get a quick overview.


Asunto(s)
Flavonas , Isoflavonas , Antocianinas/química , Glycine max/química , Fenoles/análisis , Suplementos Dietéticos , Antioxidantes/farmacología , Antioxidantes/química
2.
Biomed Pharmacother ; 146: 112498, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953395

RESUMEN

Huge quantities of byproducts/wastes generated in onion processing are usually discarded, but they are excellent sources of bioactive compounds and phytochemicals. However, with growing interest in the sustainable use of resources and the circular economy to reduce adverse impacts on the environment, food processing wastes such as onion peel/skin can be extracted and employed as inputs in developing or reformulating nutrient supplements, and pharmacological drugs. This review highlights major bioactive components, especially total phenolics, total flavonoid, quercetin and its derivatives present in onion peel/skin and their therapeutic applications as cardioprotective, neuroprotective, antiobesity, antidiabetic, anticancer and antimicrobial agents. The present review emphasized that onion peel is one of the important agricultural by-products which is rich in bioactive compounds and can be utilized as health promoting ingredient especially in pharmacological and biomedical fields. Thus, with increasing burden of life style disorders/non-communicable diseases, finding suitable natural alternative for their treatment is one major concern of the researchers and onion peel and its extract can be exploited as a prime ingredient.


Asunto(s)
Cebollas/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Fármacos Antiobesidad/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Cardiotónicos/farmacología , Flavonoides/farmacología , Hipoglucemiantes/farmacología , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología
3.
Biomed Pharmacother ; 142: 112018, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34449317

RESUMEN

The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.


Asunto(s)
Fitoquímicos/química , Extractos Vegetales/química , Solanum lycopersicum/química , Animales , Suplementos Dietéticos , Industria de Alimentos/economía , Humanos , Residuos Industriales/economía , Residuos Industriales/prevención & control , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Semillas , Administración de Residuos/métodos
4.
Carbohydr Polym ; 269: 118319, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294331

RESUMEN

Pectin is a plant-based heteropolysaccharide macromolecule predominantly found in the cell wall of plants. Pectin is commercially extracted from apple pomace, citrus peels and sugar beet pulp and is widely used in the food industry as a stabilizer, emulsifier, encapsulant, and gelling agent. This review highlights various parameters considered important for describing the inherent properties and biofunctionalities of pectins in food systems. These inherent descriptors include monosaccharide composition, galacturonic acid content, degree of esterification, molecular weight, structural morphology, functional group analysis, and functional properties, such as water and oil holding capacity, emulsification, foaming capacity, foam stability, and viscosity. In this study, we also delineate their potential as a nutraceutical, prebiotic, and carrier for bioactive compounds. The biofunctionalities of pectin as an anticancer, antioxidant, lipid-lowering, and antidiabetic agent are also conceptually elaborated in the current review. The multidimensional characteristics of pectin make it a potential candidate for use in food and biomedical science.


Asunto(s)
Pectinas/química , Pectinas/uso terapéutico , Animales , Línea Celular Tumoral , Emulsionantes/química , Humanos , Hidrólisis , Estructura Molecular , Pectinas/farmacología , Plantas/química , Reología , Relación Estructura-Actividad , Viscosidad
5.
Antioxidants (Basel) ; 10(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209152

RESUMEN

Plant-derived phytochemicals have been touted as viable substitutes in a variety of diseases. All over the world, dentists have turned to natural remedies for dental cure due to the negative possessions of certain antibacterial mediators used in dentistry. Antimicrobial and other drugs are currently in use, but they show some side effects. Since ancient times, antioxidant EOs have been used for different ailments and have grown in popularity over time. Several in vitro, in vivo, and clinical trials have shown the safety and effectiveness of antioxidant essential oils (EOs) in oral health obtained from medicinal plants. The current review of literature provides a summary of secondary metabolites, more specifically EOs from 20 most commonly used medicinal plants and their applications in maintaining oral health. Dental caries and periodontal diseases are the most common and preventable global infectious diseases, with diseases of the oral cavity being considered major diseases affecting a person's health. Several clinical studies have shown a connection between oral diseases and oral microbiota. This review discusses the role of antioxidant secondary metabolites in inhibiting the growth of oral pathogens and reducing the formation of dental plaque, and as well as reducing the symptoms of oral diseases. This review article contributes a basic outline of essential oils and their healing actions.

6.
Biomolecules ; 11(5)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919068

RESUMEN

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


Asunto(s)
Annona/química , Annona/metabolismo , Fitoquímicos/análisis , Alcaloides/análisis , Alcaloides/química , Annona/efectos de los fármacos , Antiinfecciosos , Antioxidantes/farmacología , Flavonoides/análisis , Flavonoides/química , Humanos , Hipoglucemiantes/análisis , Fenoles/análisis , Fenoles/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo
7.
Food Chem ; 353: 129431, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714109

RESUMEN

Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.


Asunto(s)
Tecnología Química Verde , Extractos Vegetales/química , Plantas/química , Antocianinas/química , Antocianinas/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Microondas , Fenoles/química , Fenoles/aislamiento & purificación , Plantas/metabolismo , Extracción en Fase Sólida
8.
Plant Foods Hum Nutr ; 75(4): 614-620, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33006129

RESUMEN

Conventional techniques for phenolics extraction from pomegranate (Punica granatum) peel (PP) have several insufficiencies like longer time duration, bioactive degradation, excess use of harmful chemicals and solvents. In the present study, we established the synergistic use of two non-conventional extraction strategies i.e., enzyme-assisted extraction (EAE) using a cellulolytic enzyme preparation (Viscozyme) followed by microwave-assisted extraction (MAE) for efficient recovery of phenolics from PP. This optimized method was individually compared with EAE, MAE, and conventional solvent extraction (CSE) methods for recovering PP phenolics with maximum antioxidant activity (AOA). Extracts were analyzed for AOA using ferric reducing antioxidant power (FRAP) and cupric reducing AOA (CUPRAC) methods. Response surface methodology (RSM), was used as an optimization tool to achieve maximum yield of phenolics and with highest AOA at power 443.5 W, time 131.0 min, and solvent-to-solid ratio 23.6:1. The predicted values for maximum phenolics and AOA obtained through RSM were 305 mg GAE/g, 1788 µmol TE/g (FRAP) and 2641 µmol TE/g (CUPRAC), respectively. Phenolic contents of only 94.6, 165.46, and 197.6 mg GAE/g were achieved through CSE, EAE and MAE, respectively. Here we substantiate the auxiliary role of Viscozyme and microwave treatment in achieving high phenolic content and AOA from PPs. Phenolic rich extracts are known to act as multi-target ligands that inhibit various enzymes involved in diseases like Alzheimer's, Parkinson's, and diabetes mellitus. The extract can be commercially exploited for the development of functional foods, supplements, and natural preservatives.


Asunto(s)
Antioxidantes , Microondas , Fenoles , Extractos Vegetales , Granada (Fruta)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA